Visualization of Induction Machine Fault Detection Using Self-Organizing Map and Support Vector Machine

نویسندگان

  • Sitao Wu
  • Tommy W. S. Chow
  • Di Huang
چکیده

Induction machines play an important role in today’s industries. How to monitoring, detection, classification, and diagnosis of induction machine faults have been the essential problems. Although there have been many methods proposed to deal with these problems, there is lack of visualization tool for understanding the problems more easily. In this paper, a visualization method is proposed to help users understand the mechanism of induction machine fault detection in a transparent way. Furthermore, user can also tell the status (normal or faulty) just directly from the visualization results. The visualization is implemented by hybridizing two neural networks: self-organizing map and support vector machine. Experimental results demonstrate the novelty and effectiveness of the proposed visualization method used for induction machine fault detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

متن کامل

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

Clustering of the Self-Organizing Map based Approach in Induction Machine Rotor Faults Diagnostics

Self-Organizing Maps (SOM) is an excellent method of analyzing multidimensional data. The SOM based classification is attractive, due to its unsupervised learning and topology preserving properties. In this paper, the performance of the self-organizing methods is investigated in induction motor rotor fault detection and severity evaluation. The SOM is based on motor current signature analysis (...

متن کامل

Ball Bearing Fault Diagnosis Using Supervised and Unsupervised Machine Learning Methods

This paper deals with the approach of using multiscale permutation entropy as a tool for feature selection for fault diagnosis in ball bearings. The coefficients obtained from the wavelet transformation of the vibration signals of the bearings are used for the calculation of statistical parameters. Based on the minimum multiscale permutation entropy criteria, the best scale is selected and stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006